

ModuLase

Development and Pilot Line Validation of a Modular Re-Configurable Laser Process Head

ModuLase Introduction to the Project

Background to the Proposal

- Despite the unrivalled versatility of fibre-delivered laser sources to perform a wide range of processes, the potential flexibility is currently limited by the need to change the processing head for the different processes to be performed (eg welding, cutting and cladding)
- The majority of industrial laser systems are employed to perform low-variety and high-volume manufacturing operations
- Current manufacturing trends (such as increased automation, individualisation and next-shoring) are driving the need to develop manufacturing systems which are capable of performing a higher variety of manufacturing operations and product mixes
- Need to maximise equipment utilisation rates, by eliminating downtime associated with changing of laser processing heads and equipment stoppages
- Increasing need by industry to reduce capital investment costs

ModuLase Call

- H2020-IND-CE-2016-17, FOF-13-2016 call
- Factories of the Future: Photonics Laser-based production
- Start date: 1st September 2016
- Duration: 36 months
- Received EC funding: €2,458,465 (€2,184,565 Grant)
- Programme directly focused on "Rapid individualised laser-based production"

Consortium

- 8 participants from 4 countries
- 50% RTO, 25%SMEs and 25%LEs
- End users within the power, aerospace and automotive sectors

Activities	Consortium
Beam Forming Unit	ULO Optics
End Effectors	TWI ULO Optics
Process monitoring and quality control	aimen CRF
Laser processing development and validation	TWI
User friendly Operating/User interface	Q -Sys
Representing needs of European Industry	(W)
Automotive, power and Aerospace applications	Graham SODECIA

ModuLase Overall Objectives

The ModuLase project will develop a re-configurable highly flexible processing head system, capable of covering welding, cladding and cutting

The ModuLase process head system will:

- Be capable of welding, cladding and cutting, through the use of three modular end-effectors
- Include intelligent sensor technologies for in-process monitoring
- Be linked to an intelligent system, in order to achieve adaptive process control, quality assurance, and semi-automated process parameter configuration

Modulase Key Features

Reduced capital investment costs:

- End- users will save as much as 59% when installing the ModuLase head (with three end-effectors considered in this project)
- Higher savings possible for organisations adopting more end-effectors
- Further savings may be realised when replacing end-effectors due to wear or damage

Maximise laser equipment utilisation rates by reducing down-time:

- Anticipated changeover time of <1 minute for the proposed ModuLase process head
- Improved utilisation rates
- The ModuLase system will allow manufacturers to adopt parallel process cell layouts, rather than sequential process cell layouts; reducing the risk of production-line stoppages

ModuLase Key Features

Reduced running costs:

- Modular end-effectors easily and cheaply replaceable
- Reconfiguring the BFU to match the required beam configuration will save time and cost.
- The integrated process control and monitoring system also helps minimise, if not eliminate, defects and therefore save on re-work or scrappage.

ModuLase Technologies & Industry Focus

ModuLase Technologies

Beam Forming Unit (BFU):

- The adaptable optical elements of the BFU will be capable of delivering a wide range of laser beam energy distributions, suitable for welding, cutting and cladding applications.
- A range of high-value goods, e.g. those made from advanced materials (advanced alloy steel, titanium, aluminium, etc.) will be covered.

End-effectors:

- Three rapidly interchangeable end-effectors will be developed to cover welding, cutting and cladding applications.
- The end-effectors will have a plug and play system to allow them to be changed on the end of the process head within a time of 1minute.

ModuLase Technologies

Process monitoring and quality control:

- A process monitoring system suitable for welding, cladding and cutting processes will be developed.
- It will be embedded into the ModuLase system, in order to assure process stability and also enabling to reduce additional time and costs involved in the process.

User friendly Operating/User interface:

- The ModuLase system will comprise an user friendly HMI interface, enabling to input the material grade, its thickness and the laser process required.
- Both the Quality Assurance System and BFU shall adjust vision and optical configurations and deliver the beam accordingly with minimal user contact.

ModuLase Technologies

Adaptability for Industrial Applications:

The ModuLase system will be able to cover cutting, welding and cladding applications

Summary of Key Deliverables

- Three end effectors manufactured for cutting, welding and cladding
- BFU manufactured
- Embedded Process Monitoring assembled
- Laser process parameters for assembly and testing of process head (BFU + end effectors + process monitoring)
- System and software integrated with new knowledge gained from TWI trials
- Final system developed from its initial specification, testing of requested settings with actual beam settings and embedded monitoring system included
- Final Demonstration of the ModuLase system in industrial environment and to an industrial audience